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1 Introduction

This paper focuses on a class of decision-making problems frequently arising in design and

maintenance optimization of mechanical structures such as bridges, building frames and

aircraft wings. Let x ∈ IRn be a vector of design variables, e.g. related to the size and

form of the structure, let c : IRn → IR be a deterministic, continuously differentiable cost

function, and let p : IRn → [0, 1] be a failure probability (to be defined below). Then, the

optimal design problem is defined as a chance-constrained stochastic program in the form:

(P) min
x∈IRn

{c(x) | p(x) ≤ q, x ∈ X} , (1)

where q is a bound on the failure probability, X = {x ∈ IRn | fj(x) ≤ 0, j ∈ J}, and

fj : IRn → IR, j ∈ J = {1, 2, ..., J}, are deterministic, continuously differentiable functions.

Mechanical structures are assessed using one or more performance measures, e.g., dis-

placement and stress levels at various locations in the structure. In Ref. 1, we focused on

the case were failure probability is defined as the probability of one performance measure

being unsatisfactory. In this paper, we consider the general case of “system failure proba-

bility” where failure probability is defined by a collection of performance measures. Here,

“failure” occurs when specific combinations of the performance measures are unsatisfactory.
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Let gk : IRn × IRm → IR, k ∈ K = {1, 2, ...,K}, be a collection of performance functions

describing the relevant performance measures. The functions gk(·, ·) depend on the design

x ∈ IRn and a standard normal random m-vector u. This random vector incorporates

the uncertainty in the structure and its environment. Note that random vectors governed

by distributions such as the multivariate normal (possibly with correlation) and lognormal

distributions can be transformed into a standard normal vector using a smooth bijective

mapping. Hence, the limitation to a multivariate standard normal distribution is in many

applications not restrictive (see e.g. Chapter 7 of Ref. 2 and Refs. 3-5).

By convention, gk(x, u) ≤ 0 represents unsatisfactory performance of the k-th measure.

Formally, let the probability space (IRm,Rm, IP) be defined in terms of the sample space

IRm, the Borel sets on IRm, denoted Rm, and the multivariate standard normal distribution

IP of u. Assuming that gk(x, ·) is measurable for all x ∈ IRn and k ∈ K, we define the

failure probability of the structure by p(x) = IP[F(x)], where the failure domain

F(x) =
⋃

i∈I

⋂

k∈Ci

{u ∈ IRm | gk(x, u) ≤ 0}, (2)

with Ci ⊂ K and I = {1, 2, ..., I} defining the combinations of performance measures that

leads to structural failure. In Ref. 1, we focused on the case K = 1, C1 = {1}, and I = 1.
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Solution approaches for stochastic programs tend to be based on either interior or ex-

terior sampling. Interior sampling approaches aim to solve stochastic programs directly

and resort to sampling techniques whenever the algorithm requires the evaluation of prob-

ability functions, or more generally, expectations. Usually, different samples are generated

each time an evaluation is necessary. In this group of approaches we find stochastic quasi-

gradient methods (Refs. 6-8). These methods are difficult to apply to problems involving

failure probability constraints. In principle, such constraints can be removed by penalty or

barrier terms in the objective function. However, the details of an implementable algorithm

for nonlinear problems based on this principle do not appear to have been worked out.

Exterior sampling techniques construct and solve a sample average approximation with-

out further sampling during the optimization. The results available for exterior sampling

techniques include the fact that minimizers and minimum values of sample average ap-

proximations converge with probability one to minimizers and the minimum value of the

original problem, respectively, as the number of samples goes to infinity (see Chapter 6 of

Ref. 9 and references therein). For techniques for checking whether a given point is close to

stationarity see e.g. Section 6.4 of Ref. 9. These results provide guidance for the selection
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of approximating problems to be solved using some deterministic optimization algorithm.

The authors of Ref. 10 present a framework based on sample average approximations,

for proving convergence of nonlinear programs involving probabilities or expectations. Only

a rather weak sense of convergence is presented in Ref. 10: every accumulation point of

the sequence of function values generated by the algorithm is bounded from above by the

largest function value at any stationary point. In addition, the details of an implementable

algorithm for problems with failure probability constraints are not provided.

Recently, elements of interior and exterior sampling techniques have been combined. In

Ref. 11, sample average approximations are used to derive a gradient-type search direction

for nonlinear stochastic programs. For each iteration, re-sampling is performed to generate

a new search direction. Under the assumption of convex, twice-differentiable functions, it is

shown that the expected distance to a Karush-Kuhn-Tucker point vanishes with increasing

iterations when the search direction is combined with sufficiently small stepsizes. However,

it is not clear how to implement a satisfactory stepsize rule. In addition, the literature

contains a large number of approximate or heuristic approaches for solving (P) and similar,

more specialized problems. A review of such results is found in Ref. 12.
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The failure probability is continuously differentiable under broad conditions when F(x)

is bounded and given by a union of events (Ref. 13). However, the derivative formula in

Ref. 13 is difficult to use in estimation because it may involve surface integrals. In Ref. 14

(see also Ref. 8), an integral transformation is presented, which, when it exists, leads to a

simple formula for ∇p(x). However, it is not clear under what conditions the transformation

exists. As in Ref. 13, Ref. 15 assumes that F(x) is bounded and given by a union of events.

With this restriction, a formula for ∇p(x) involving integration over a simplex is derived. In

principle, this integral can be evaluated by Monte Carlo methods. However, to the authors’

knowledge, there is no computational experience with estimation of failure probabilities for

highly reliable mechanical structures using this formula. In Section 9.2 of Ref. 2, a formula

for ∇p(x) is suggested, without a complete proof, for the case K = 1. This formula is based

on an expression for p(x) that has been found computationally efficient in applications.

In the next section, we generalize the special-case formula for ∇p(x) found in Ref. 2 and

provide a proof. We also present estimators for p(x) and ∇p(x) and discuss their properties.

For completeness, Section 3 presents Algorithm Model 3.3.27 from Ref. 16, which we use to

develop our algorithm for solving (P). Section 4 derives an implementation of the algorithm
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model by generalizing the results of Ref. 1. Section 5 presents a numerical example.

2 Failure Probability

As indicated in Section 1, a significant difficulty is associated with deriving a tractable

formula for the gradient of p(x)4. To overcome this difficulty, we decompose the vector u

into a direction w and a positive length r as described in further detail below (see Ref. 17

for the first application of such an decomposition).

We need the component failure domain Fk(x) defined by Fk(x) = {u ∈ IRm | gk(x, u) ≤

0}, k ∈ K, and the surface of the unit hypersphere denoted by IB = {w ∈ IRm | ‖w‖ = 1}.

The following assumption is sufficient to ensure equivalence between p(x) and its alternative

expression in Proposition 2.1 below.

Assumption 2.1. We assume that

(i) the distribution IP of the random m-vector u is standard normal, and

(ii) for a given S ⊂ IRn, Fk(x)c (= IRm−Fk(x)) is star-shaped with respect to the origin
4We will not make use of this fact, but note that p(x) can be estimated using standard Monte Carlo

techniques independently of the results in this section.
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for all k ∈ K and x ∈ S, i.e., for all x ∈ S, 0 ∈ Fk(x)c and for every w ∈ IB there

either exists a unique r > 0 such that gk(x, rw) = 0 or gk(x, rw) 6= 0 for all r > 0.

In view of Assumption 2.1(i) and the fact that mechanical structures have small failure

probabilities, we conclude that Fk(x) tends to be located far from the “high probability

region” close to 0 ∈ IRm. Hence, the condition that 0 ∈ Fk(x)c is almost always satisfied for

mechanical structures. The second part of Assumption 2.1(ii) is satisfied when gk(x, ·) is

affine for all x ∈ S and k ∈ K, which is approximately true for many mechanical structures

(Sections 4.1 and 5.2 of Ref. 2). However, in general, it can be difficult to verify the second

part of Assumption 2.1(ii) analytically. This is especially the case when gk(·, ·), k ∈ K,

are given by the solutions of some (differential) equations. Nevertheless, it is possible to

obtain numerical indications of the validity of Assumption 2.1(ii) by estimating the failure

probability using an alternative estimator as explained below. We also note that equivalent

assumptions were adopted by Refs. 15, 18, 19 and Section 9.2 of Ref. 2.

Let P and E be the uniform distribution on IB and the corresponding expectation,

respectively. Furthermore, we define rk : IRn × IB → [0,∞], k ∈ K, to be the smallest
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nonnegative solution of gk(x, rw) = 0 for a given x ∈ IRn and w ∈ IB, i.e.,

rk(x,w) =





min
r
{r | gk(x, rw) ≤ 0, r ≥ 0}, if {r | gk(x, rw) ≤ 0, r ≥ 0} 6= ∅,

∞, otherwise.

(3)

Note that under Assumption 2.1(ii), 0 ∈ Fk(x)c and hence rk(x,w) > 0.

Proposition 2.1. If Assumption 2.1 holds at x ∈ IRn, then

p(x) = E[φ(x,w)], (4)

where

φ(x,w) = max
i∈I

min
k∈Ci

{1− χ2
m(r2

k(x,w))} (5)

and χ2
m(·) is the Chi-square cumulative distribution function with m degrees of freedom.

Proof: As in Ref. 17 (see alternatively Refs. 18, 19, and Section 9.2 of Ref. 2), we observe

that, if the standard normal random vector u = rw and r2 is Chi-square distributed with m

degrees of freedom, then w is a random vector, independent of r, uniformly distributed over

the surface of the m-dimensional unit hypersphere. Hence, using an equivalent minimax

expression of (2) and the total probability rule we obtain that

p(x) = E

[
Pr

[{
min
i∈I

max
k∈Ci

gk(x, rw) ≤ 0
}∣∣∣∣w

]]
, (6)
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where Pr is the Chi-square distribution. In view of Assumption 2.1, the expression inside

the expectation in (6) equals 1 − χ2
m(r2(x,w)), where r(x,w) = mini∈I maxk∈Ci

rk(x,w).

Geometrically, r(x,w) is the minimum distance in direction w from 0 ∈ IRm to F(x). Since

χ2
m(·) and the square function (positive domain) are strictly increasing, the result follows.

Informally, we note that φ(x,w) is the probability of a failure event in the direction of

w for a given x. We also observe that when Assumption 2.1(ii) is not satisfied, (4) may

overestimate the failure probability. Hence, it is conservative to assume that Assumption

2.1(ii) is satisfied. For a given x ∈ IRn, it is possible to get an indication whether Assumption

2.1(ii) holds by computing an estimate
∑N

j=1 IF(x)(uj)/N of p(x), where u1, u2, ..., uN are

independent, identically distributed standard normal vectors and IF(x)(uj) = 1 if uj ∈

F(x), and zero otherwise. If this estimate is significantly smaller than the one of (4), then

Assumption 2.1(ii) is not satisfied.

For a given x ∈ IRn and w ∈ IB, let the set of active performance functions

K̂(x,w) = {k ∈ K|k ∈ Ĉi(x,w), i ∈ Î(x,w)} (7)
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where

Î(x,w) =
{
i ∈ I

∣∣∣∣min
i′∈I

max
k∈Ci′

rk(x,w) = max
k∈Ci

rk(x,w)
}
, (8)

Ĉi(x,w) =
{
k ∈ Ci

∣∣∣∣max
k′∈Ci

rk′(x,w) = rk(x,w)
}
. (9)

Furthermore, let Ak(x) be the w-directions where k is active, i.e.,

Ak(x) = {w ∈ IB | k ∈ K̂(x,w)}. (10)

We now show that p(·) is continuously differentiable under the following assumptions.

Assumption 2.2. We assume that for a given set S ⊂ IRn, the following hold:

(i) there exists a constant C1 <∞ such that mini∈I maxk∈Ci rk(x,w) ≤ C1 for all x ∈ S

and w ∈ IB,

(ii) the performance functions gk(x, u), k ∈ K, are continuously differentiable in both

arguments for all x ∈ S, u ∈ IRm,

(iii) there exists a constant C2 > 0 such that |∇ugk(x, rk(x,w)w)Tw| ≥ C2 for all x ∈ S,

w ∈ Ak(x), and k ∈ K, and

(iv) P [Ak(x)
⋂Al(x)] = 0 for all x ∈ S and k, l ∈ K, k 6= l.
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The particular set of performance functions gk(·, ·), k ∈ K, arising in an application may

not satisfy Assumption 2.2(i). However, it is always possible to define an artificial perfor-

mance function gK+1(x, u) = ρ−‖u‖, with a sufficiently large ρ > 0, replace I by I+1, and

set CI = {K + 1}. Then, F(x) satisfies Assumption 2.2(i). This is equivalent to enlarging

the failure domain. The probability associated with the enlarged failure domain is slightly

larger than the one associated with the original failure domain. The difference, however,

is no greater than 1− χ2
m(ρ2) and therefor negligible for sufficiently large ρ. Consequently,

Assumption 2.2(i) is not restrictive in practice.

Assumption 2.2(iii) can be difficult to verify. However, it is our experience that values

of performance functions arising in practice tend to change as one moves from F(x)c into

the interior of the failure domain for a fixed x. If this was not the case, a perturbation of

a scenario would have resulted in no change in the performance measure, which is unlikely

in mechanical structures. Assumption 2.2(iv) states that only one performance function is

active at each point on the boundary of the failure domain almost surely. Since performance

functions represent different performance measures in a structure, they tend to have quite

different forms. If two performance functions are identical on significant subsets, then one
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of them is redundant and remodelling is appropriate.

Lemma 2.1. Suppose Assumptions 2.1 and 2.2 hold on a sufficently large subset of IRn

containing a compact set X0. Then,

(i) there exists a constant C < ∞ such that |φ(x,w) − φ(x′, w)| ≤ C‖x − x′‖ for all

x, x′ ∈ X0 and w ∈ IB,

(ii) for each fixed x ∈ X0, φ(·, w) is continuously differentiable at x for P -almost all

w ∈ IB,

(iii) the collections {φ(x,w)}x∈X0 and {∇xφ(x,w)}x∈X0 are uniformly integrable, i.e.,

lim
γ→∞ sup

x∈X0

∫

{w∈IB | |φ(x,w)|≥γ}
|φ(x,w)|P (dw) = 0 (11)

and similarly with |φ(x,w)| replaced by ‖∇xφ(x,w)‖.

Proof: First consider (i). By Assumption 2.2(i), rk(x,w) < ∞ for all x ∈ X0, w ∈ IB, and

k ∈ K̂(x,w). Hence, in view of Assumptions 2.2(ii-iii) and 2.1(ii), the implicit function

theorem gives that rk(·, w) is continuously differentiable for all x ∈ X0, w ∈ IB, and k ∈

K̂(x,w), and

∇xrk(x,w) = −∇xgk(x, rk(x,w)w)/∇ugk(x, rk(x,w)w)Tw (12)
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when defined. Consequently, it can be deduced from Theorem 5.4.5 in Ref. 16 that for all

w ∈ IB, φ(x,w) has directional derivatives on x ∈ X0 in all directions with respect to its

first argument and the directional derivative in the direction h ∈ IRn is defined by

dφ(x,w;h) = max
i∈Î(x,w)

min
k∈Ĉi(x,w)

−2fχ2
m

(r2
k(x,w))rk(x,w)∇xrk(x,w)Th, (13)

where fχ2
m

(·) is the probability density function of the Chi-square distribution. Using As-

sumption 2.2(iii) and the fact that rk(x,w), k ∈ K̂(x,w) are bounded on X0 for all w ∈ IB,

(12) is bounded for all x ∈ X0, w ∈ IB, and k ∈ K̂(x,w). Since the max-min in (13) is

only over i ∈ Î(x,w) and k ∈ Ĉi(x,w), it follows from the definition of K̂(x,w) and the

boundedness of (12) that (13), given an h ∈ IRn, is bounded for all x ∈ X0 and w ∈ IB.

Hence, |φ(x,w)− φ(x′, w)| ≤ C‖x− x′‖ for all x, x′ ∈ X0 and w ∈ IB.

Now consider (ii). Let x′ ∈ X0 be arbitrary. For P -almost all w ∈ IB, it follows from

Assumption 2.2(iv) that the ray from 0 ∈ IRm in the direction of w does not intersect

Ak(x′)
⋂Al(x′) for any k, l ∈ K, k 6= l. Let w′ ∈ IB be such that the corresponding

ray has this property. Consequently, the set K̂(x′, w′) has cardinality one. Suppose that

k′ = K̂(x′, w′). Then, gk′(x′, r(x′, w′)w′) = 0, where r(x,w) = mini∈I maxk∈Ci rk(x,w). By

Assumption 2.1(ii) and continuity, there exists a neighborhood X ′0 ⊂ X0 of x′ such that
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k′ = K̂(x,w′) and gk′(x, r(x,w′)w′) = 0 for all x ∈ X ′0. Hence, φ(x,w′) = 1−χ2
m(r2

k′(x,w
′))

for all x ∈ X ′0 and, due to the smoothness of rk′(·, w′), φ(x,w′) is continuously differentiable

at x′ with

∇xφ(x′, w′) = 2fχ2
m

(r2
k′(x

′, w′))rk′(x′, w′)
∇xgk′(x′, rk′(x′, w′)w′)
∇ugk′(x′, rk′(x′, w′)w′)Tw′

. (14)

Finally, consider (iii). Clearly, |φ(x,w)| ≤ 1 for all x ∈ X0 and w ∈ IB and (11) holds.

By Assumption 2.2(i-iii) and the fact that X0 is compact, it follows that for all w ∈ IB, the

right-hand side of (14) is uniformly bounded on X0. Hence, {∇xφ(x,w)}x∈X0 is uniformly

integrable.

In view of Lemma 2.1, the next result follows directly from Proposition 2.1 in Ref. 20.

Proposition 2.2. If Assumptions 2.1 and 2.2 hold on a sufficiently large subset of IRn

containing a convex and compact set X0, then p(·) is continuously differentiable on X0 and

its gradient is given by

∇p(x) = E[∇xφ(x,w)], (15)

where ∇xφ(x,w) is given in (14) with k′ ∈ K̂(x,w).

We estimate the expectations in (4) and (15) by Monte Carlo sampling. Consider an

16



infinite sequence of sample points, each generated by independent sampling from P . Let

IB = IB × IB × ... and let P be the probability distribution on IB generated by P . Let

subelements of w ∈ IB be denoted wj ∈ IB, j = 1, 2, ..., i.e., w = (w1, w2, ...). For every

w ∈ IB, we define the estimator of (4):

pN (x,w) =
N∑

j=1

φ(x,wj)/N. (16)

The asymptotic property of this estimator is given by the next well-known result (see e.g.

Ref. 21 for a proof which holds under weaker assumptions than stated here.).

Proposition 2.3. If Assumptions 2.1 and 2.2 hold on a sufficiently large subset of IRn

containing a compact set X0, then, for P -almost all w ∈ IB,

lim
N→∞

sup
x∈X0

|pN (x,w)− p(x)| = 0. (17)

Since φ(·, w) is only Lipschitz continuous (Lemma 2.1(i)), we observe that pN (·, w) is

generally nonsmooth. However, as the next proposition shows, pN (·, w) has directional

derivatives and a nonempty subgradient5 for all w ∈ IB.
5See e.g. Definition 5.1.31 in Ref. 16. This type of subgradient is sometimes referred to as a regular

subgradient (Definition 8.3 in Ref. 22)

17



Proposition 2.4. Suppose Assumptions 2.1 and 2.2 hold on a sufficiently large subset of

IRn containing a compact set X0. Then, for all w ∈ IB, pN (·, w) is Lipschitz continuous on

X0 and has a nonempty subgradient ∂pN (x,w) defined by

∂pN (x,w) =
N∑

j=1

∂φ(x,wj)/N, (18)

where

∂φ(x,wj) = conv
k∈K̂(x,wj)

{
2fχ2

m
(r2
k(x,wj))rk(x,wj)

∇xgk(x, rk(x,wj)wj)
∇ugk(x, rk(x,wj)wj)Twj

}
, (19)

with fχ2
m

being the Chi-square probability density function.

Proof: It follows from Lemma 2.1(i), that for all w ∈ IB, pN (·, w) is Lipschitz continuous

on X0. It can be deduced from Theorem 5.4.5 in Ref. 16 that for all w ∈ IB, φ(·, w) has

directional derivatives with respect to its first argument in all directions. Hence, it follows

from Lemma 1 in Ref. 23 that for all w ∈ IB, pN (x,w) has directional derivatives in all

directions for all x ∈ X0. Furthermore, a slight generalization of Corollary 5.4.6 in Ref.

16, yields that the directional derivative of pN (x,w) is identical to the (Clarke) generalized

directional derivative of pN (x,w). Hence, ∂pN (x,w) is identical to the (Clarke) generalized

gradient of pN (x,w), which is nonempty. A slight extension of Corollary 5.4.6 in Ref. 16,
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yields the formula above.

By Lemma 2.1, the next result follows directly from Proposition 2.2 in Ref. 20.

Proposition 2.5. Suppose Assumptions 2.1 and 2.2 hold on a sufficiently large subset of

IRn containing a convex and compact set X0. Then, for P -almost all w ∈ IB, ∂pN (x,w)

converges uniformly to ∇p(x), i.e.,

lim
N→∞

sup
x∈X0

sup
d∈∂pN (x,w)

‖d−∇p(x)‖ = 0. (20)

Using (16), we define a sequence of approximating problems. For any w ∈ IB and

N ∈ IIN = {1, 2, ...}, let the sample average approximating problem (PN (w)) be defined by

(PN (w)) min
x∈IRn

{c(x) | pN (x,w) ≤ q, x ∈ X} . (21)

Intuitively, (PN (w)) becomes a better “approximation” to (P) as N increases. In fact, epi-

convergence characterizes this effect more precisely, as we see in the next proposition (see

e.g. Theorems 3.3.2-3.3.3 in Ref. 16 for a proof), which requires a constraint qualification:

Assumption 2.3. Given w ∈ IB, we assume that for every x ∈ X satisfying p(x) ≤ q, there

exists a sequence {xN}∞N=1 ⊂ X, with pN (xN , w) ≤ q, such that xN → x, as N →∞.
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Proposition 2.6. Consider the sequence of approximate problems {PN (w)}∞N=1. Suppose

that Assumptions 2.1 and 2.2 hold on a sufficiently large convex and compact subset of IRn.

Then, for P -almost all w ∈ IB, the following holds:

(i) If Assumption 2.3 is satisfied at w ∈ IB, then {PN (w)}∞N=1 epi-converges to P.

(ii) If Assumption 2.3 is satisfied at w ∈ IB and {x̂N}∞N=1 is a sequence of global minimizers

of {PN (w)}∞N=1, then every accumulation point of {x̂N}∞N=1 is a global minimizer of

P.

Before presenting an algorithm, we need to strengthen the result in Proposition 2.3.

Proposition 2.7. Suppose that Assumptions 2.1 and 2.2 hold on a sufficiently large subset

of IRn containing a compact set X0. Then, for P -almost all w ∈ IB there exists a constant

C <∞ such that for all x ∈ X0 and N ∈ IIN,

|pN (x,w)− p(x)| ≤ C
√

(log logN)/N. (22)

Proof: Let G be defined by G(x,w) = φ(x,w) − p(x) for all x ∈ X0, w ∈ IB. By Lemma

2.1 and (4), G is centered and G(·, w) ∈ C(X0), where C(X0) is the space of continuous

functions on X0. Furthermore, by Assumptions 2.1 and 2.2(ii-iii) and the implicit function
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theorem, rk(·, ·) is continuous for all x ∈ X0, w ∈ IB, and k ∈ K̂(x,w). Hence, it can be

deduced from Corollary 5.4.4 in Ref. 16 that r(·, ·) = mini∈I maxk∈Ci
rk(·, ·) is continuous on

X0× IB. Since X0 and IB are compact, it follows that r(·, ·) is uniformly continuous on X0×

IB. Let r̃ : IB → C(X0) be defined by r̃(w) = r(·, w). Then, it follows that r̃ is continuous

on IB and hence measurable with respect to the Borel sets in C(X0). Consequently, G is also

measurable. Hence, G is a random variable with values in a separable Banach space. Define

‖G‖∞ = supx∈X0
|G(x,w)|. A corollary of Theorem 8.11 in Ref. 24, page 217, is that if G

is a centered Banach space valued random variable such that E(‖G‖2∞/ log log ‖G‖∞) <∞

and such that the central limit theorem holds for G then the law of the iterated logarithm

also holds for G. Since G is bounded, E(‖G‖2∞/ log log ‖G‖∞) <∞. Hence, it only remains

to show that the central limit theorem holds for G.

Let N(ε,X0, ‖ · ‖) be the covering number, i.e., the minimal number of open balls

Bo(x, ε) = {x′ ∈ IRn|‖x′ − x‖ < ε} needed to cover X0. Since X0 is compact, there

exists a constant η <∞ such that N(ε,X0, ‖ · ‖) ≤ (η/ε)n for all ε > 0. Hence, the entropy

integral

∫ ∞
0

√
logN(ε,X0, ‖ · ‖)dε ≤

∫ η

0

√
n(log η − log ε)dε <∞. (23)
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By Lemma 2.1(i), G has Lipschitz continuous sample paths with a square-integrable Lips-

chitz constant. Hence, it follows by the Jain-Marcus theorem (see Ref. 25, Example 2.11.13)

that the central limit theorem holds. Consequently, the law of iterated logarithm holds for

G. Hence, for P -almost all w ∈ IB and all x ∈ X0, (22) holds for some C and sufficiently

large N . By increasing C, the result can be made to hold for all N .

3 Algorithm Model

Before presenting an algorithm model, we present optimality conditions for (P). Under

Assumptions 2.1 and 2.2, (P) is a nonlinear program involving continuously differentiable

functions, with stationary points defined by the F. John conditions. We find it convenient

to express the F. John conditions (see Theorems 2.2.4 and 2.2.8 in Ref. 16) by means of a

nonpositive, continuous, optimality function θ : IRn → IR, which is defined by

θ(x) = −min
z∈Z

{
zT b(x) + zTB(x)TB(x)z/(2δ)

}
, (24)

with Z = {z ∈ IRJ+2 | ∑J+2
l=1 z

(l) = 1, z(l) ≥ 0, l = 1, ..., J + 2},

b(x) = (γψ(x)+, ψ(x)+ − p(x) + q, ψ(x)+ − f1(x), ..., ψ(x)+ − fJ(x))T , (25)
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and B(x) = (∇c(x),∇p(x),∇f1(x), ...,∇fJ(x)), where ψ(x) = max{p(x)−q,maxj∈J fj(x)},

ψ(x)+ = max{0, ψ(x)}, and γ, δ > 0. For any x̂ ∈ X such that p(x̂) ≤ q, the F. John

conditions hold if and only if θ(x̂) = 0 (Theorem 2.2.8 in Ref. 16).

Since neither p(x) nor ∇p(x) can be evaluated exactly in finite computing time, an al-

gorithm for (P) involving the evaluations of p(x) and ∇p(x) is conceptual. We construct an

implementable algorithm by using Algorithm Model 3.3.27 in Ref. 16. For completeness, the

algorithm model is presented below. The algorithm model makes use of an approximate al-

gorithm map AN,w : IRn → 2IRn involving pN (x,w) and ∂pN (x,w). Note that the algorithm

map can be set-valued. The algorithm model also uses the function FN : IRn × IRn → IR in

a precision-adjustment rule, where

FN (x′, x′′) = max{c(x′′)− c(x′)− γψN (x′)+, ψN (x′′)− ψN (x′)+}, (26)

ψN (x) = max
{
pN (x,w)− q,max

j∈J
fj(x)

}
, (27)

ψN (x)+ = max{0, ψN (x)}, and γ > 0.

Algorithm Model for Solving (P). (Adapted from Algorithm Model 3.3.27, Ref. 16)

Parameters. τ ∈ (0, 1), η > 0.
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Data. x0 ∈ IRn, an unbounded setN of positive integers, and a collection w = (w1, w2, ...) ∈

IB of independent sample points from P .

Step 0. Set i = 0 and N = minN .

Step 1. Compute y ∈ AN,w(xi).

Step 2. If

FN (xi, y) ≤ −η
(√

(log logN)/N
)τ
, (28)

then set xi+1 = y, Ni = N , replace i by i+ 1, and go to Step 1.

Else, replace N by min{N ′ ∈ N|N ′ > N}, and go to Step 1.

Note that the algorithm model uses a precision-adjustment rule (28) to ensure that the

error in function evaluations is sufficiently small in comparison to algorithmic progress.

Given τ and η as well as a set of sample sizes N , the rule determines how fast the sample

size is increased. Empirical evidence from the areas of optimal control and semi-infinite

optimization indicates that such a feedback rule is computationally more efficient than

using a predetermined schedule for increasing the sample size. To ensure convergence of the

algorithm model, we adopt the following assumption regarding the algorithm map in Step
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1. For brevity, for any x ∈ IRn and ρ > 0, let B(x, ρ) = {x′ ∈ IRn|‖x− x′‖ ≤ ρ}.

Assumption 3.1. Given S ⊂ IRn, we assume that the algorithm map AN,w : IRn → 2IRn

satisfies the following property for P -almost all w ∈ IB:

For every x ∈ S with θ(x) < 0, there exist δx > 0, Nx ∈ IIN, and ρx > 0 such that

FN (x′, y) ≤ −δx for all N ≥ Nx, x′ ∈ B(x, ρx), and y ∈ AN,w(x′).

In the next section, we present one particular algorithm map that satisfies Assumption

3.1. The convergence of the algorithm model is given by the next theorem, which can be

proven using the same arguments as in the proof of Theorem 3.3.29 in Ref. 16.

Theorem 3.1. Suppose that Assumptions 2.1, 2.2, and 3.1 hold on a sufficiently large

subset of IRn and that the algorithm model for solving (P) has constructed a bounded

sequence {xi}∞i=0. If x̂ is an accumulation point of {xi}∞i=0, then x̂ is a stationary point for

(P), i.e., θ(x̂) = 0, P -almost surely.
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4 Implementation

Consider the following set-valued algorithm map, which is a generalization of the Polak-He

algorithm, see Section 2.6 in Ref. 16. For any xi ∈ IRn, N ∈ IIN, and w ∈ IB, we define

AN,w(xi) = {xi + λN (xi, d)hN (xi, d)|d ∈ ∂pN (xi, w)}, (29)

where the Armijo stepsize is given by

λN (xi, d) = max
k∈{0,1,2,...,}

{
βk | FN (xi, xi + βkhN (xi, d)) ≤ βkαθN (xi, d)

}
, (30)

with FN (·, ·) as in (26),

θN (x, d) = −min
z∈Z

{
zT bN (x) + zTBN (x, d)TBN (x, d)z/(2δ)

}
, (31)

where δ > 0, Z is defined as in (24),

bN (x) = (γψN (x)+, ψN (x)+ − pN (x,w) + q, ψN (x)+ − f1(x), ..., ψN (x)+ − fJ(x))T , (32)

BN (x, d) = (∇c(x), d,∇f1(x), ...,∇fJ(x)), (33)

α ∈ (0, 1], and β ∈ (0, 1). Finally, the search direction

hN (xi, d) = −BN (xi, d)ẑ/δ, (34)
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where ẑ is any solution of (31). The parameter γ in (26) and (31) should be set equal to γ

in FN (·, ·) in the algorithm model. The problem in (31) is quadratic and can be solved in

a finite number of iterations by a standard QP-solver (e.g. Quadprog Ref. 26).

Our next result shows that (29) satisfies Assumption 3.1. Hence, this algorithm map

combined with the algorithm model in a convergent implementable algorithm.

Proposition 4.1. Suppose that Assumptions 2.1 and 2.2 hold on an open set S ⊂ IRn. For

any N ∈ IIN and w ∈ IB, let the algorithm map AN,w(·) be defined by (29), with the same

values of the parameters α, β, δ, and γ for all N ∈ IIN. Then, AN,w(·) satisfies Assumption

3.1 on any convex and compact subset of S for P -almost all w ∈ IB.

Proof: Let X0 ⊂ S be convex and compact. For P -almost all w ∈ IB, the search direction

hN (x, d) is bounded for all x ∈ X0 and d ∈ ∂pN (x,w) because it is defined as a linear combi-

nation of bounded vector-valued functions (see (34), (33), Proposition 2.4, and Assumption

2.2). For P -almost all w ∈ IB, the bound is independent of N due to Proposition 2.5. Since

S is open, there exists a λ1 ∈ (0, 1] such that x + λhN (x, d) ∈ S for P -almost all w ∈ IB

and for all x ∈ X0, λ ∈ (0, λ1], N ∈ IIN, and d ∈ ∂pN (x,w).

It is seen from Proposition 2.4 and its proof that for all w ∈ IB and x ∈ S, pN (x,w) is
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Lipschitz continuous, with a directional derivative equal to the (Clarke) generalized direc-

tional derivative. Hence, Lebourg mean-value theorem (see e.g. Theorem 5.4.13b in Ref.

16) is applicable. By the Lebourg mean-value theorem and the fact that λ1 ≤ 1, we obtain

that for P -almost all w ∈ IB and for all x ∈ X0, λ ∈ (0, λ1], d ∈ ∂pN (x,w), and N ∈ IIN,

there exist some s, sj ∈ [0, 1], j = 0, 1, 2, ..., J, and d′ ∈ ∂pN (x+ sλhN (x, d), w) such that

FN (x, x+ λhN (x, d)) ≤ λmax
{
− γψN (x)+ +∇c(x)ThN (x, d)

+ (∇c(x+ s0λhN (x, d))−∇c(x))ThN (x, d),

pN (x,w)− q − ψN (x)+ + dThN (x, d) + (d′ − d)ThN (x, d),

max
j∈J
{fj(x)− ψN (x)+ +∇fj(x)ThN (x, d)

+ (∇fj(x+ sjλhN (x, d))−∇fj(x))ThN (x, d)}
}
.

(35)

For any ε > 0, it follows from Proposition 2.5 that for P -almost all w ∈ IB there exists

a Nε ∈ IIN such that for all N ≥ Nε

sup
x∈S

sup
d∈∂pN (x,w)

‖d−∇p(x)‖ ≤ ε/3. (36)

Furthermore, ∇c(·),∇fj(·), j ∈ J, and ∇p(·) are uniformly continuous on compact sets and
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hN (x, d) is bounded almost surely. Hence, for P -almost all w ∈ IB there exists a λε ≤ λ1

such that for all λ ∈ (0, λε], x ∈ X0, d ∈ ∂pN (x,w), and N ∈ IIN we have

‖∇p(x+ sλhN (x, d))−∇p(x)‖ ≤ ε/3, (37)

‖∇c(x+ s0λhN (x, d))−∇c(x)‖ ≤ ε, (38)

‖∇fj(x+ sjλhN (x, d))−∇fj(x)‖ ≤ ε, j ∈ J. (39)

Hence, using (36) and (37), we obtain that ‖d′ − d‖ ≤ ε. From (35), we then obtain that

for P -almost all w ∈ IB and for all x ∈ X0, λ ∈ (0, λε], d ∈ ∂pN (x,w), and N ≥ Nε,

FN (x, x+ λhN (x, d)) ≤ λmax
{
− γψN (x)+ +∇c(x)ThN (x, d),

pN (x,w)− q − ψN (x)+ + dThN (x, d),

max
j∈J
{fj(x)− ψN (x)+ +∇fj(x)ThN (x, d)}

}
+ λε‖hN (x, d)‖.

(40)

We can deduce from Theorem 2.2.8 in Ref. 16 that

θN (x, d) = max
{
− γψN (x)+ +∇c(x)ThN (x, d),

pN (x,w)− q − ψN (x)+ + dThN (x, d),

max
j∈J
{fj(x)− ψN (x)+ +∇fj(x)ThN (x, d)}

}
+ δ‖hN (x, d)‖2/2.

(41)
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Hence, by adding and subtracting λδ‖hN (x, d)‖2/2 from (40), we obtain

FN (x, x+ λhN (x, d)) ≤ λθN (x, d) + λ(ε− δ‖hN (x, d)‖/2)‖hN (x, d)‖ (42)

for P -almost all w ∈ IB and for all x ∈ X0, λ ∈ (0, λε], d ∈ ∂pN (x,w), and N ≥ Nε.

Now suppose that x∗ ∈ X0 is such that θ(x∗) < 0. Without loss of generality, we assume

that x∗ is in the interior of X0. Let h(x) be given by

h(x) = −B(x)T ẑ/δ, (43)

where B(x) is defined as in (24), δ > 0 is as in (24), and ẑ is any solution of (24). Since

h(x∗) = 0 implies θ(x∗) = 0, ‖h(x∗)‖ 6= 0. Then, by continuity of θ(·) and h(·) (see Theorem

2.2.8 in Ref. 16), there exist δ1 > 0 and ρx∗ > 0 such that θ(x) ≤ −δ1 and ‖h(x)‖ ≥ δ1

for all x ∈ B(x∗, ρx∗). Set ε∗ = δδ1/4. By Proposition 7.1 (see Appendix), for P -almost

all w ∈ IB there exists an Nx∗ ≥ Nε∗ such that θN (x, d) ≤ −δ1/2 and ‖hN (x, d)‖ ≥ δ1/2

for all x ∈ B(x∗, ρx∗) and d ∈ ∂pN (x,w). Since ε∗ − δ‖hN (x, d)‖/2) ≤ 0 for P -almost

all w ∈ IB and for all x ∈ B(x∗, ρx∗) and d ∈ ∂pN (x,w), it now follows from (42) that

FN (x, x + λhN (x, d)) ≤ λθN (x, d) ≤ 0 for P -almost all w ∈ IB and for all x ∈ B(x∗, ρx∗),
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λ ∈ (0, λε∗ ], d ∈ ∂pN (x,w), and N ≥ Nx∗ . Hence, for algorithm parameter α ∈ (0, 1],

FN (x, x+ λhN (x, d))− λαθN (x, d) ≤ λ(1− α)θN (x, d) ≤ 0 (44)

for P -almost all w ∈ IB and for all x ∈ B(x∗, ρx∗), λ ∈ (0, λε∗ ], d ∈ ∂pN (x,w), and N ≥ Nx∗ .

Consequently, for any x ∈ B(x∗, ρx∗) and N ≥ Nx∗ , the algorithm map AN,w(·) has stepsize

λN (x, d) ≥ βλε∗ for any d ∈ ∂pN (x,w) and for P -almost all w ∈ IB. Hence, for any

x ∈ B(x∗, ρx∗), d ∈ ∂pN (x,w), and N ≥ Nx∗ ,

FN (x, y) ≤ αλN (x, d)θN (x, d) ≤ αβλε∗θN (x, d) ≤ −αβλε∗δ1/2 (45)

for all y ∈ AN,w(x′) and P -almost all w ∈ IB. This completes the proof.

Usually, the one-dimensional root finding problems in the evaluation of rk(x,w), k ∈

K̂(x,w), cannot be solved exactly in finite computing time. One possibility is to introduce

a precision parameter that ensures a gradually better accuracy in the root finding as the

algorithm progresses. Alternatively, we can prescribe a rule saying that the root finding al-

gorithm should terminate after CNi iterations, with C being some constant. For simplicity,

we have not discussed the issue of root finding. In fact, this issue is not problematic in prac-

tice. The root finding problems can be solved in a few iterations with high accuracy using
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standard algorithms. Hence, the root finding problems are solved with a fixed precision for

all iterations in the algorithm giving a negligible error.

5 Numerical Example

We consider the same highway bridge as in Ref. 12. The objective is to design a reinforced

concrete girder for minimum cost using nine design variables (n = 9). Uncertainty is

modeled using eight random variables (m = 8). We assume that the girder can fail in four

different modes. Failure occurs if any of the four failure modes occur. This gives rise to four

performance functions. To ensure that F(x)c is bounded (see Assumption 2.2(i)), we define

an artificial performance function g5(x, u) = 8−‖u‖. Note that this implies an enlargement

of the failure domain, but the increase in the failure probability is less than 10−10. This

leads to five performance functions and Ci = {i}, i ∈ I = {1, 2, ..., 5} (see (2)). We impose

the constraint p(x) ≤ q = 0.001350, as well as 23 other deterministic, nonlinear constraints.

For details about the example, we refer to Ref. 12. It should be noted that the performance

functions are nonlinear and sufficiently differentiable. We are unable to verify analytically

that the performance functions satisfy Assumption 2.1(ii). However, we estimate the failure
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probability for the first and last iterations using the estimator
∑N

j=1 IF(x)(uj)/N of p(x),

where u1, u2, ..., uN are independent, identically distributed standard normal vectors and

IF(x)(uj) = 1 if uj ∈ F(x), and zero otherwise, and find it not significantly different from the

estimates obtained using (16). Furthermore, we do not experience numerically difficulties,

which could have been expected in an example not satisfying Assumption 2.1(ii). Hence, it

is reasonable to believe that Assumption 2.1(ii) is satisfied over a sufficiently large subset.

The resulting instance of (P) is implemented in Matlab 6.5 (Ref. 26) and solved using

our algorithm model with the algorithm map defined in (29). The evaluation of rk(x,w) is

performed using the Matlab root-finder Fzero, with tolerance 1 · 10−5, and (31) is solved

using Matlab’s Quadprog. Parameters are τ = 0.9999, η = 0.002, γ = 2, α = 0.5, β = 0.8,

and δ = 1. Furthermore, N = {200, 1600, 5400, 12800, 25000, ...}. The computations are

terminated when the algorithm model reaches a sample size greater than 25000.

After an application of our new algorithm, we obtain an optimized structure with cost

13.288. In comparison, the design obtained in Ref. 12 has a somewhat larger cost of 13.664.

In this example, a less reliable structure is also cheaper. As expected, when our algorithm

was terminated the constraint p(x) ≤ 0.001350 was (approximately) active: estimated
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failure probability is 0.001350 with coefficient of variation 0.02. An examination of the

design from Ref. 12 shows that its failure probability is 0.001310 with coefficient of variation

0.01. Hence, a 95% confidence interval of the failure probability is (0.001284, 0.001336)

which is outside the constraint limit 0.001350. From this analysis we conclude that the

algorithm in Ref. 12 may give excessively safe designs. The algorithm in Ref. 12 is based

on heuristic updating of first-order approximations of the failure probability and is not

expected to lead to the same accuracy level as our new algorithm. However, the algorithm

in Ref. 12 appears to involve fewer evaluations of the performance functions and their

gradients. Note also that the algorithm in Ref. 12 is limited to the special case of Ci

having only one element for all i ∈ I.

6 Conclusions

We construct an implementable algorithm for nonlinear stochastic programming problems

with system failure probability constraints. First, we generalize an expression for the fail-

ure probability and show that it is continuously differentiable. Second, we prove a uniform

strong law of large numbers for the estimators of the failure probability and its gradient. We
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also establish a uniform law of the iterated logarithm for the estimator of the failure proba-

bility. Third, we construct an algorithm map that satisfies the assumptions of an algorithm

model. Preliminary numerical testing on a realistic design problem demonstrates the po-

tential for sampling-based optimization algorithms in structural engineering. In particular,

the high accuracy of such algorithms compared to frequently used heuristics is promising.

7 Appendix

Proposition 7.1. Suppose Assumptions 2.1 and 2.2 hold on a convex and compact set

X0 ⊂ IRn. Then, for P -almost all w ∈ IB,

lim
N→∞

sup
x∈X0

sup
d∈∂pN (x,w)

|θN (x, d)− θ(x)| = 0 (46)

lim
N→∞

sup
x∈X0

sup
d∈∂pN (x,w)

‖hN (x, d)− h(x)‖ = 0 (47)

where θ(·), θN (·, ·), h(·), and hN (·, ·) are defined in (24), (31), (43), and (34), respectively.

Proof: Let ε > 0 be arbitrary. We deduce from Propositions 2.3 and 2.5 that for P -almost

all w ∈ IB there exists a Nε ∈ IIN such that for all N ≥ Nε and h ∈ IRn

sup
x∈X0

|ψ(x)+ − ψN (x)+| ≤ ε. (48)
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sup
x∈X0

sup
d∈∂pN (x,w)

|dTh−∇p(x)Th| ≤ ε‖h‖. (49)

Consequently, for P -almost all w ∈ IB and all N ≥ Nε and h ∈ IRn

sup
x∈X0

sup
d∈∂pN (x,w)

∣∣pN (x,w)− q − ψN (x)+ + dTh

−(p(x)− q − ψ(x)+ +∇p(x)Th)
∣∣ ≤ 2ε+ ε‖h‖.

(50)

Let

ψ̃N (x, x+ h, d) = max
{
−γψN (x)+ +∇c(x)Th, pN (x,w)− q − ψN (x)+ + dTh,

max
j∈J
{fj(x)− ψN (x)+ +∇fj(x)Th}

}
+ δ‖h‖2/2,

(51)

ψ̃(x, x+ h) = max
{
−γψ(x)+ +∇c(x)Th, p(x)− q − ψ(x)+ +∇p(x)Th,

max
j∈J
{fj(x)− ψ(x)+ +∇fj(x)Th}

}
+ δ‖h‖2/2.

(52)

Using (48), (50), and the fact that c(·) and ∇c(·) are bounded functions on X0, we find that

for P -almost all w ∈ IB and all N ≥ Nε and h ∈ IRn,

sup
x∈X0

sup
d∈∂pN (x,w)

|ψ̃N (x, x+ h, d)− ψ̃(x, x+ h)| ≤ max{γε, 2ε+ ε‖h‖}. (53)

Next, h(x) is bounded for all x ∈ X0 because it is defined as a linear combination of bounded

vector-valued functions. Using the same argument and Proposition 2.5 we have that for

P -almost all w ∈ IB, hN (x, d) is bounded for all x ∈ X0, d ∈ ∂pN (x,w), and N ∈ IIN. Hence,
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for P -almost all w ∈ IB there exists a C∗ <∞ such that ‖h(x)‖ ≤ C∗ and ‖hN (x, d)‖ ≤ C∗

for all x ∈ X0, d ∈ ∂pN (x,w), and N ∈ IIN. From Theorem 2.2.8 of Ref. 16 we deduce that

θN (x, d) = ψ̃N (x, x+ hN (x, d), d) = min
h∈IRn

ψ̃N (x, x+ h, d), (54)

θ(x) = ψ̃(x, x+ h(x)) = min
h∈IRn

ψ̃(x, x+ h). (55)

Let ε∗ = max{γε, 2ε + εC∗}. We now have that for P -almost all w ∈ IB and all x ∈ X0,

d ∈ ∂pN (x,w), and N ≥ Nε∗ ,

θ(x) ≤ ψ̃(x, x+ hN (x, d)) ≤ ψ̃N (x, x+ hN (x, d)) + ε∗ ≤ θN (x) + ε∗ (56)

θ(x) = ψ̃(x, x+ h(x)) ≥ ψ̃N (x, x+ h(x))− ε∗ ≥ θN (x)− ε∗. (57)

Hence, (46) holds. We now address (47). For the sake of a contradiction, suppose (47) is

not valid. Then, there exists a subset IB0 ⊂ IB with P [IB0] > 0 such that for every w ∈ IB0

there exist ε > 0, {Ni}∞i=1, Ni → ∞, as i → ∞, {xi}∞i=1 ⊂ X0, {di}∞i=1, di ∈ ∂pNi(xi, w),

with the property that

‖hNi(xi, di)− h(xi)‖ ≥ ε (58)

for all i ∈ IIN. As stated above, for P -almost all w ∈ IB, hN (x, d) is bounded for all

x ∈ X0, d ∈ ∂pN (x,w), and N ∈ IIN. Consider an w ∈ IB0 with this boundedness property.
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Then, there exist an infinite subset I0 ⊂ IIN, an x∗ ∈ IRn and an h∗ ∈ IRn such that

xi → x∗, hNi(xi, di)→ h∗, as i→∞, i ∈ I0. Continuity of ψ̃(·, ·) and (53) imply that

lim
i→∞,i∈I0

|ψ̃Ni(xi, xi + hNi(xi, di), di)− ψ̃(x∗, x∗ + h∗)| = 0. (59)

Hence, it follows Theorem 3.3.2 in Ref. 16 that the problems

min
h∈IRn

ψ̃Ni(xi, xi + h, di) (60)

epi-converge to the problem

min
h∈IRn

ψ̃(x∗, x∗ + h), (61)

as i→∞, i ∈ I0. Since {hNi(xi, di)}∞i=1 is a sequence of global minimizers of (60), it follows

from Theorem 3.3.3 in Ref. 16 that h∗ must be a global minimizer of (61). Since the

problem in (61) is strictly convex, it has a unique global minimizer. Hence, h∗ = h(x∗),

which contradicts (58). This completes the proof.
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